Likelihood Inference in the Presence of Nuisance Parameters

نویسنده

  • N. Reid
چکیده

We describe some recent approaches to likelihood based inference in the presence of nuisance parameters. Our approach is based on plotting the likelihood function and the p-value function, using recently developed third order approximations. Orthogonal parameters and adjustments to profile likelihood are also discussed. Connections to classical approaches of conditional and marginal inference are outlined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying Nuisance Parameter Effects via Decompositions of Asymptotic Refinements for Likelihood-based Statistics

Accurate inference on a scalar interest parameter in the presence of a nuisance parameter may be obtained using an adjusted version of the signed root likelihood ratio statistic, in particular BarndorffNielsen’s R∗ statistic. The adjustment made by this statistic may be decomposed into a sum of two terms, interpreted as correcting respectively for the possible effect of nuisance parameters and ...

متن کامل

Integrated likelihoods in models with stratum nuisance parameters

Inference about a parameter of interest in presence of a nuisance parameter can be based on an integrated likelihood function. We analyze the behaviour of inferential quantities based on such a pseudolikelihood in a two-index asymptotics framework, in which both sample size and dimension of the nuisance parameter may diverge to infinity. We show that the integrated likelihood, if chosen wisely,...

متن کامل

Location Reparameterization and Default Priors for Statistical Analysis

This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...

متن کامل

General Theory of Inferential Models Ii

This paper is a continuation of the authors' theoretical investigation of inferential model (IMs); see Martin, Hwang and Liu (2010). The fundamental idea is that prior-free posterior probability-like inference with desirable long-run frequency properties can be achieved through a system based on predicting unobserved auxiliary variables. In Part I, an intermediate conditioning step was proposed...

متن کامل

Objective Bayesian higher-order asymptotics in models with nuisance parameters

We discuss higher-order approximations to the marginal posterior distribution for a scalar parameter of interest in the presence of nuisance parameters. These higher-order approximations are obtained using a suitable matching prior. The proposed procedure has several advantages since it does not require the elicitation on the nuisance parameter, neither numerical integration or MCMC simulation,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003